A Proposal for Two New Psychology Journals

I’m listening to a great Long Now Seminar by Nassim Nicholas Taleb about probability in complex systems and it reminded me of a great idea. Nassim gives only what he calls “negative advice,” meaning advice about what not to do. He considers positive advice useless and laments that it’s so hard to find books called Ten Ways to Screw Up Your Life, or How I Lost a Million Dollars, compared to stuff like Ten Steps to Success.

There is a related publishing problem in psychology, and perhaps other sciences: If your idea doesn’t work out, you can’t get it published. Journals do not want to publish failed experiments. They just aren’t sexy. The problem is, at a typical alpha of .05, one in twenty experimental results will be flukes—just random happenings, not reliable, not indicative of anything real going on. Even with a more rigorous alpha of .01, you will get a false positive every 100 experiments you run, on average.

Research psychologists know this. They get a lot of training in statistics. They do not feel certain about their own results until the results have been replicated in other labs. But they rely on what is published for their input. For my honors thesis, for example, I was interested in how the effects of having power over others compares to having power over yourself.  So I read the literature on power and designed my experiment first to replicate the results of two experiments from a famous  paper which showed evidence for social power inhibiting perspective taking, and then to extend that research a little, by adding a “personal power” condition. Almost every paper on power mentions that social power inhibits perspective taking, and they all cite this famous paper to back them up. The author is prolific and well-respected, and rightfully so. He does really creative, interesting work.

Despite my considerable efforts to duplicate his methods, however, I replicated none of his results. “These are the flattest data I’ve ever seen,” said Sean, my advisor. That was a problem for my honors thesis, because the question I wanted to look at never came up—I had nothing to compare my personal power numbers to. I had a conversation with this famous psychologist later and found out that he had not been able to replicate his results either. Now flat data is not a problem for science; every researcher I’ve talked to about it has said something like, “Hmm! It didn’t replicate, huh? That’s really interesting!” The problem is, that information was already out there and I couldn’t get to it. This scientist knew about the problem, but I didn’t. Now I know about it, but no one outside of my lab will know, because no one will publish it. The next person who has my idea will make the same mistake, and the next.

The solution:

First, an idea either stolen or adapted from my advisor, a high quality psychology journal calledNull Results in Psychology, with a mission to publish peer reviewed failures. It might be an online-only journal, because it would need to be big. If such a thing had existed a year ago, I could have run a standard check and saved myself a lot of trouble.

Second, another journal called Replicated Results in Psychology, which would be for publishing peer reviewed, successful replications of previous research. Or perhaps these two could be combined into one. It doesn’t matter.

Third, both of these journals could be attached to a database that compiled and cross-referenced replications and failed replications. Ideally, the strength of a theory or evidence is based on how well it predicts the future. In practice, however, this is only partly the case, and turns out to be true only in the long run. The weight carried by a theory or evidence has at least as much to do with the fame of the scientist who produced it. Everyone is waiting for and immediately reads their new stuff. There is a database which records how often a paper is cited, but the number of citations tells you only the relative fame of that paper. It doesn’t say whether the citations are supportive or critical. And most citations are not either—they are used to support the author’s thinking.

Easy access to null results, replicated results, and a database linking it all together could change the direction and the pace of progress in psychology. It could also make learning psychology more interesting. My professors were mostly very good about not just teaching theories. They presented (and had me memorize) the experimental methods and evidence that led to the formulation of the theories. Even so, I often wondered how soon and in what way these theories would seem quaint, like phlogiston or “the ether”–early evidence supported these ideas, too, after all.  I would have loved it if evidence could have been presented like, “OK, we’re starting to feel pretty good about these results, because these variations have been tried by 30 different labs, and 25 of them found the same thing.” I can imagine the groans of my fellow students and the cheers of my professors, which makes me think it’s a good idea.

[First published as “A Good Idea” on Nathen’s Miraculous Escape, July 25, 2009.]

Visual Working Memory: Capacity, Resolution, and Expertise

[First published on Nathen’s Miraculous Escape, July 20, 2009.]


Visual Working Memory: Capacity, Resolution, and Expertise

Nathen B. Lester

For PSY 435, Dr. Awh

University of Oregon

June 9, 2008

Visual Working Memory: Capacity, Resolution, and Expertise

Ideas in psychology change and develop in much the same way that they do in a conversation, a conversation taking place over years, primarily in the form of detailed written accounts of hypotheses, experiments, and results. It may be slow and technical, but it has the same form: Assertions are made, evidence is presented, mistakes are pointed out, and new assertions are made. Incrementally, the amount of knowledge is increased.

One such conversation that is ongoing in the scientific literature is about the capacity of visual working memory and how it may be affected by the perceptual expertise of the viewer.

Because working memory capacity is correlated with scholastic ability, attentional control, and scores on intelligence tests (Cowan, Elliot, Saults, Morey, Mattox, Hismjatullina, &Conway, 2005), it is a topic of considerable interest among researchers in cognitive psychology. The following sections describe three articles which are examples of an exchange between researchers on this topic which gives rise to new knowledge as well as raising new questions.

The Capacity of Visual Working Memory for Features and Conjunctions

In their article of 1997, Luck and Vogel argued for a visual working memory capacity of approximately four objects, regardless of how complex those objects are. They found mounting evidence for this in a series of experiments using Phillips’ (1974) change-detection paradigm, where subjects are shown an initial array of objects, a pause, and then a test array, with the task of indicating whether the two arrays were identical or different.  They conducted several experiments using arrays of visual objects which varied in their number and types of features, including a single color only, two colors for each object, object orientation only, color and orientation together, and finally objects which varied in their color, orientation, size, and the presence or absence of a gap. In all conditions of all experiments, subjects could accurately detect changes in about four of the objects in an array. This is strong evidence for an object-based working memory capacity and against a feature-based working memory capacity: Four objects were consistently remembered, whether those objects’ combined features equaled four, eight, or even 16 features.

Several other variations were used to rule out possible alternate explanations. To test for the possibility that their verbal working memories were aiding in the task, subjects were given a verbal load of two digits to remember, with no effect on their performance. To rule out the possibility that capacity estimates were being limited by the very brief presentation of the initial array, that presentation was increased from 100 ms to 500 ms, with no change in the results. To address the fact that more decisions had to be made when viewing larger test arrays, which could lead to more errors, another condition had subjects indicate whether one randomly chosen object had changed. This also did not affect the results. Finally, the condition in which each object had two colors was run to test the possibility that there are separate working memory systems for each kind of feature. Subjects in this condition could remember about four objects whether that meant remembering four colors or eight colors, evidence against a feature-based working memory system for color distinct from the system that remembers the other types of features.

A Visual Short-Term Memory Advantage for Faces

Curby and Gauthier’s 2007 article was an attempt to show the effects of holistic processing on visual working memory capacity, using a variation of the change-detection paradigm. Because of the greater efficiency of holistic processing, they reasoned, objects like upright faces, with which subjects have a lot of expertise, will be stored more efficiently in working memory. They hypothesized that this should result in a larger working memory capacity for faces than for other complex objects. Their experiments resulted in three basic findings: (a) At 500 ms of encoding time, subjects were less accurate in detecting changes between faces than they were in detecting changes between cars or watches. (b) At 2500 ms encoding time, subjects’ accuracy was equivalent for all categories. (c) At 4000 ms encoding time, subjects were more accurate with the faces than they were with the other categories of objects.

Curby and Gauthier’s (2007) explanation of these results was that for complex objects, perceptual encoding processes cause a bottleneck for creating representations in visual working memory. At the shortest encoding time, this results in fewer objects in memory from an array of faces than from arrays of less complex objects such as cars or watches. At the 2500 ms encoding time, the benefits of efficient, holistic processing brought the number of faces encoded up to the number of other objects. By 4000 ms of encoding time, those benefits allowed more faces to be stored in visual working memory than any other kind of object tested. In other words, given enough time, the benefits of the more holistic processing of faces outweighs their disadvantage of being more complex. Finally, based on this, they reasoned that the limits on the storage of complex objects in working memory hypothesized by Alvarez and Cavanagh (2004) are ameliorated to some degree by this efficient processing of faces.

Perceptual Expertise Enhances the Resolution but Not the Number of Representations in Working Memory

Scolari, Vogel, and Awh’s 2008 article was largely a correction and clarification of the meaning of Curby and Gauthier’s (2007) results: The benefit of expertise is not in the number but in the resolution of objects in working memory. The difference in subjects’ ability to detect changes in a face out of an array of faces compared to changes in, for example, a car out of an array of cars, was actually a measurement of comparison errors made between the memories formed and the test display, not the number of objects held in working memory. That is, when Curby and Gauthier (2007) thought they were measuring the quantity of objects in working memory, they were actually measuring their quality.

Scolari et al. (2008) managed to show this in one experiment using four categories of objects: faces, inverted faces, shaded cubes, and colored ovals. Within-category changes between the initial display and the test display replicated Curby and Gauthier’s (2007) results. In other words, subjects were more likely to detect a change from one upright face to another, as compared to a change from one cube to another or one inverted face to another, possibly reflecting the benefits of holistic processing for faces. Changes across categories, however, which eliminated the possibility of comparison errors, replicated Luck and Vogel’s (1997) results. In other words, when the changes were big, a face changing into a cube, for example, working memory capacity estimates were at about four objects, regardless of the complexity of those objects.

Scolari et al. (2008) also found that individual differences in subjects’ performance in the cross-category change detection tasks were correlated to their performance in their simple color-change detection task. This suggests that performance on these tasks produces a more pure estimate of working memory capacity than does performance on within-category tasks. Additionally, the cross-category individual differences were not correlated to the within-category individual differences, indicating that being able to hold a certain number of objects in working memory and being able to store details about those objects are distinct abilities, drawing on different resources.

Two Additional Voices

Two other articles are worth briefly describing to flesh out this conversation. The first of these is Alvarez and Cavanagh’s 2004, “The capacity of visual short-term memory is set both by visual information load and by number of objects.” This article was in part a reply to Luck and Vogel (1997) and set the stage for Curby and Gauthier’s error: Alvarez and Cavanagh measured what they thought was the complexity of the objects they used in their change-detection tasks and found that visual working memory capacity was limited by the complexity, and not just the number, of the objects therein.

The problem was that their operational definition of “complexity,” which was based on visual search rate, was confounded with similarity. That is, Alvarez and Cavanagh (2004) judged categories of objects more complex because they were more difficult to tell apart. This was pointed out by Awh, Barton, and Vogel (2007) in “Visual working memory represents a fixed number of items regardless of complexity.” Setting the stage for Scolari et al. (2008), Awh et al. (2007) showed that it was actually comparison errors, caused by object similarity, and notobject complexity that were producing the lower estimates for visual working memory capacity.


Useful conversations rely on careful logic, clearly defined terms, and up to date information. In one way, the exchange here can be seen as corrective of errors in these areas.

Luck and Vogel (1997) used sound and thorough reasoning in combination with a series of very straightforward experiments to present evidence for an object-based visual working memory capacity of about four items, and, simultaneously, evidence against the idea that visual working memory is limited by the number of features each object has. Alvarez and Cavanagh (2004) presented what they thought was evidence for the complexity of objects being an additional limit to capacity, but Awh et al. (2007) showed that apparent limit to be a resource artifact from the difficulty of distinguishing highly similar items from each other. Almost certainly unaware of Awh and colleagues’ work, Curby and Gauthier (2007) set out to refine the work of Alvarez and Cavanagh (2004), stating that the complexity of objects may limit capacity, but expertise can overcome that limit to some degree. Then Scolari et al. (2008) pointed out that Curby and Gauthier (2007), relying on Alvarez and Cavanagh’s reasoning, had made the same error: Their results did not mean what they had thought. When comparison errors are eliminated, it is obvious that the number of objects stored in working memory is not affected by those objects’ complexity.

While in some ways side-tracks based on faulty reasoning, these works of Alvarez, and Cavanagh (2004), and Curby and Gauthier (2007), have also been useful in extending our knowledge. What we mean by the word “capacity,” for example, has been refined. “Capacity” has been used in a variety of ways, especially in Curby and Gauthier (2007), who used it to mean either the total number of “slots” available in working memory, the number of slots that happened to have been filled in a certain experiment, an amount of total information, and a kind of rate-based encoding capacity, in the vein of “objects encoded per second.” It is now clear to those with up-to-date information, that when discussing visual working memory, “capacity” should refer to the number of slots available for visual objects.

It should also be clear that we currently have a model for visual working memory that has at least two factors: capacity for storing objects and the resolution of those objects. Further, the information-load bottleneck may be a real phenomenon, but it is not about the time it takes to store complex items; it appears to be about the time it takes to build representations of sufficient resolution to avoid comparison errors. Furthermore, expertise, which may result in more holistic processing of visual stimuli, does seem to increase subjects’ ability to encode high-resolution memories, even if it does not increase the number of objects which can be stored.

Many good questions have been raised as well. Since search-rate based measurements have been ruled out, what are good operational definitions of “complexity” and “information load” in regard to visual objects? Is there a kind of “resolution capacity,” and how would it relate to expertise, given a good operational definition of complexity? How does this relate to the “consolidation time” estimates between 50 ms and 500 ms in Curby and Gauthier (2007, p. 627)? What is the role of expertise in the resolution of memories of objects other than faces? The most interesting question follows from the correlation of working memory capacity, intelligence scores and academic achievement (Cowan et al., 2005): Since individual differences in the resolution factor are not correlated with individual differences in the capacity factor (Scolari et al. 2008), what is the relationship between the resolution of visual working memory and intelligence?


Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15, 106-111.

Awh, E., Barton, B., & Vogel, E. K. (2008). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622-628.

Cowan, N., Elliot, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. A. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology 51, 42-100.

Curby, K. M., & Gauthier, I. (2007). A visual short-term memory advantage for faces.Psychonomic Bulletin & Review, 14, 620-628.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.

Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perceptual Psychophysiology, 16, 283-290.

Scolari, M., Vogel, E. V., & Awh, E. (2008). Perceptual expertise enhances the resolution but not the number of representations in working memory. Psychonomic Bulletin & Review, 15, 215-222.

An Important Lexical Retrieval Variable

I just read about two studies that found that humanities lecturers use more filled pauses–time saying ‘uh,’ ‘um,’ etc–than science lecturers, and that it’s probably because the humanities have more synonyms to draw upon. In science, it is very useful in conversation to have very precise, technical definitions of each word that everyone agrees upon. Empathy, for example, cannot mean or connote compassion in psychological discourse, and if it does, you run into problems.

Maybe that’s why the people in my social cognition lab (can) talk so fast. They all understand precisely each word, so ideas can come and go very rapidly. Still too rapidly for me to understand, sometimes.

[First published on Nathen’s Miraculous Escape, May 7, 2009.]